UDC 378:629.7
https://doi.org/10.20339/AM.06-23.005
Sergey V. Reznik, Dr. Sc. (Technic), Professor, Head of Dpt. SM-13 at Bauman Moscow State Technical University, ORCID: 0000-0002-4837-6993, e-mail: sreznik@bmstu.ru
Konstantin V. Mikhailovski, Cand. Sc. (Technic), Docent at Bauman Moscow State Technical University, ORCID: 0000-0003-3424-3775, e-mail: konst_mi@mail.ru
Inna R. Shafikova, Senior lecturer at Bauman Moscow State Technical University, ORCID: 0000-0001-5814-0960, e-mail: shafikova@bmstu.ru
This article considers the issue of training designers and technicians for the creation of orbital and planetary structures within the group of specialties 24.00.00 “Aviation and rocket and space technology”. This work is relevant due to the expanding plans for the construction of national and international space stations in the Earth and the Moon orbits, and the construction of bases on the surface of celestial bodies. It is assumed that the exploration of celestial bodies can begin before the end of this decade with the bases created on the surface of the Moon. It is noted that the implementation of these projects must involve the modular principle, the use of robotic mechanisms, smart composite materials, natural resources of celestial bodies and solar energy. Several international master’s degree programs in space construction and architecture are described in brief. As an example, the key features of the new master’s degree curriculum in the field of training 24.04.01 “Rocket complexes and Cosmonautics” developed at the Department of SM-13 “Rocket and Space Composite Structures” at the Bauman Moscow State Technical University are given. A number of new disciplines, new for an aerospace university have been included in the curriculum for the master’s degree graduate to form the necessary competencies in the field of space construction.
Keywords: space, construction, composite materials, master’s degree, training plan.
References
- Comparative education research: approaches and methods / Ed. M. Bray, B. Adamson, M. Mason. 2nd edition. Hong Kong: Comparative Education Centre, University of Hong Kong; Springer, 2014. 453 p.
- Bagrov, A.V. From Tsiolkovsky to the modern concepts of space settlements // K.E. Tsiolkovsky. The issues and future prospects of the Russian science and technology: Proc. 52nd Scientific conference in the memory of K.E. Tsiolkovsky. Kaluga: Polytop Publ. House, 2017. P. 119–122.
- Von Braun, W., Ordway, F.I. III, Dooling, D. History of rocketry and space travel. New York: Thomas Y. Crowell Co., 1986. 244 p.
- Gatland, K.W. Astronautics in the sixties. John Wiley & Sons, 1962. 388 p.
- Space age in fiscal year 2001: Proceed. 4th AAS Goddard Memorial Symposium (Washington, DC, 15–16 March, 1966) / Ed. Konecci E.B., Hunter M.W., Trapp R.F. Tarzana, Calif.: AAS Publications Office, 1967. 446 p.
- Erike, K.A. The future of space industry. Moscow: Mashinostroenie Publ., 1979. 200 p.
- The illustrated encyclopedia of space technology. A comprehensive history of space exploration / Ed. K. Gatland. New York: Crown Publishers, 1981. 290 p.
- The history of Russian manned cosmonautics / Ed. I.V. Barmin. Moscow: Stolichnaya entsiklopedia Publ., 2015. 752 p.
- Gvamichava, A.S., Koshelev, V.A. Construction in space. Moscow: Znanie Publ., 1984. 64 p.
- Cosmonautics of the XXI century. Attempt to forecast development up to 2101 / Ed. B.E. Chertok; B.E. Chertok, V.V. Apollonov, O.A. Arin et al. Moscow: RTSoft Publ., 2010. 864 p.
- Barmin, I. Egorov, A. Project of Moon settlement. Tekhnika — molodezhi. 2003. No. 6. P. 30–35.
- Adams, C.M., Petrov, G. The surface endoskeletal inflatable module (SEIM). Proceed. 10th Biennial Int. Conf. on Engineering, Construction, and Operations in Challenging Environments and 2nd NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration (League City/Houston, TX, March 5–8, 2006). Reston, VA: American Society of Civil Engineers, 2006. 8 p. DOI: 10.1061/40830(188)59
- Hinkle, J. et al. Design development and testing for an expandable lunar habitat. Proceed. AIAA Space 2008 Conf. and Exposition (San Diego, CA, September 9–11, 2008). AIAA, 2008. 10 p. DOI: 10.2514/6.2008-7634
- Inocente, D. et al. Master planning and space architecture for a moon village. Proceed. 70th Int. Astronautical Congress (IAC) (Washington, DC, October 21–25, 2019). 15 p.
- Valle, G., Litteken, D., Jones, T.C. Review of habitable softgoods inflatable design, analysis, testing, and potential space applications // Proceed. AIAA Scitech 2019 Forum (San Diego, CA, January 7–11, 2019). AIAA, 2019. DOI:10.2514/6.2019-1018
- Bagrov, A.V., Leonov, V.A. Constructing a cosmodrome on the Moon by fusing regolith onto monolithic surface. Aerospace sphere. 2018. No. 4 (97). P. 78–83.
- Seedhouse, E. Bigelow Aerospace: colonizing space one module at a time. Heidelberg: Springer-Praxis, 2015. 201 p.
- Khamits, I.I., Filippov, I.M., Burylov, L.S. et al. Deployable large-scale structures for perspective manned spacecraft. Kosmicheskaya tekhnika i tekhnologii. 2016. Iss. 2 (13). P. 23–33.
- Rosenberg, D.A. The origins of overkill: nuclear weapons and American strategy 1945–1960. International Security. 1983. Vol. 7, No. 4. P. 3–71.
- Rosenberg, D.A. American atomic strategy and the hydrogen bomb decision. The Journal of American History. 1979. (66.1): P. 62–87. DOI: 10.2307/1894674
- M-1: 50 years after launch / Ed. V.I. Usiukin, A.I. Ganichev, S.V. Reznik. Moscow: Bauman MSTU Publ., 1998. 216 p.
- Reznik, S.V., Prosuntsov, P.V. History and experience of overcoming thermal barriers in rocket and space technology: 1. Ballistic missiles. IOP Conf. Series: Materials Science and Engineering 971 (2020) 052047. 8 p. DOI: 10.1088/1757-899X/971/5/052047
- Reznik, S., Prosuntsov, P. History and experience of overcoming thermal barriers in rocket and space technology: 2. Ballistic and sliding descent of spaceships. AIP Conf. Proceedings 2503 (2022) 020011. 10 p. DOI: 10.1063/5.0099420
- Häuplik-Meusburger, S., Bannova, O. Space architecture education for engineers and architects: designing and planning beyond Earth (space and society). Wien: Springer-Verlag GmbH, 2016. 541 p.
- Bannova, O. Space architecture: human habitats beyond planet Earth. DOM Publishers, 2021. 240 p.
- Häuplik-Meusburger, S., Bishop, S. Review: studies and architecture of habitability missions in mockups and simulated environments. In: Space Habitats and Habitability. Space and Society. Springer, Cham., 2021. DOI: 10.1007/978-3-030-69740-2_4
- Häuplik-Meusburger, S. Architecture for astronauts. An activity-based approach. Wien: Springer-Verlag GmbH, 2011. 316 p.
- Neumerkel, R, Vecerdi, M., Häuplik-Meusburger, S. Design of an autonomously deployable Mars habitat. Proceed. 50th Int. Conf. on Environmental Systems (Lisbon, Portugal, July 12–15, 2021). 12 p.
- Howe, A.S., Sherwood, B. Out of this world: the new field of space architecture. Reston, VA: AIAA, 2009. 421 p. DOI: 10.2514/4.479878
- Leach, N. Space architecture: the new frontier for design research. Architectural design. 2014. Vol. 84, No. 6. DOI: 10.1002/ad.1826
- Caratelli, P. Space architecture: the rise of a new discipline in architecture and design curricula / T. Ahram, R. Taiar, S. Colson, A. Choplin, eds. Proceed. Int. Conf. on Human Interaction and Emerging Technologies IHIET 2019. Advances in Intelligent Systems and Computing, 2020. Vol. 1018. Springer, Cham. P. 98–104. DOI: 10.1007/978-3-030-25629-6_16
- Naser, M.Z. Extraterrestrial construction materials. Progress in Materials Science. 2019. Vol. 105 (4). DOI:10.1016/j.pmatsci.2019.100577
- Aerospace education in Russia. Features of specialists’ training in the context of global changes / Ed. D.A. Kozorez. Moscow: MAI Publ., 2022. 160 p.